报告人:李仁仓教授

报告时间:915日(周三)10:00-11:30

报告地点:腾讯会议 ID:444 196 791


报告摘要:

  In 2002, Alfa, Xue, and Ye showed that the inverse of a nonsingular M-matrix can be determined to highly relative entrywise accuracy by a triplet representation of the M-matrix, and devised the so-called GTH-like algorithm, a variant of Gaussian elimination, to deliver a numerical inverse with comparable entrywise relative accuracy. The breakthrough form the foundation of later developments in numerical solutions of the M-matrix algebraic Riccati equation (MARE) and the Quasi-Birth-and-Death (QBD) equation with guaranteed high relative entrywise accuracy. In this talk, we will survey those developments, including recent ones on the shifted M-matrix algebraic Riccati equation and the structured M-matrix algebraic Riccati equation.


报告人简介:

  李仁仓教授现为美国Texas大学Arlington分校终身教授,香港浸会大学讲座教授。1988年在中科院获硕士学位,1995年在美国加州大学伯克利分校获应用数学博士学位,师从图灵奖得主W. Kahan教授。曾担任1995年美国橡树林国家实验室Householder研究员,厦门大学闽江学者。获得1996年加州大学伯克利分校应用数学的Friedman纪念奖,1999年获美国国自然科学基金会的CAREER奖。曾任《SIAM Journal on Matrix Analysis and Applications》刊物副主编,现任《Numerical Algebra, Control and Optimization》和《Mathematical Communications》刊物副主编及《Linear and Multilinear Algebra》等三个SCI期刊编委。主要研究领域包括浮点计算,数值代数,模型降阶,非线性流形识别,数据科学等。




邀请人:张雷洪