报告人:丁南庆教授(南京大学)

时间:2021/10/11, 15:30-16:30

腾讯会议:960 439 910

 

报告摘要:Let $A$, $B$ be two rings and $T=\left(\begin{smallmatrix}  A & M \\  0 & B \\\end{smallmatrix}\right)$ with $M$ an $A$-$B$-bimodule. Suppose that we are given two complete hereditary cotorsion pairs $(\mathcal{A}_{A},\mathcal{B}_{A})$ and $(\mathcal{C}_{B},\mathcal{D}_{B})$ in $A$-Mod and $B$-Mod respectively. We define two cotorsion pairs $(\Phi(\mathcal{A}_{A},\mathcal{C}_{B}), \mathrm{Rep}(\mathcal{B}_{A},\mathcal{D}_{B}))$ and $(\mathrm{Rep}(\mathcal{A}_{A},\mathcal{C}_{B}),\Psi(\mathcal{B}_{A},\mathcal{D}_{B}))$ in $T$-Mod and show that both of these cotorsion pairs are complete and hereditary.

If we are given two cofibrantly generated model structures $\mathcal{M}_{A}$ and $\mathcal{M}_{B}$ on $A$-Mod and $B$-Mod respectively, then using the result above, we investigate when there exists a cofibrantly generated model structure $\mathcal{M}_{T}$ on $T$-Mod and a recollement of $\mathrm{Ho}(\mathcal{M}_{T})$ relative to $\mathrm{Ho}(\mathcal{M}_{A})$ and $\mathrm{Ho}(\mathcal{M}_{B})$. Finally, some applications are given in Gorenstein homological algebra. This talk is a report on joint work with R.M. Zhu and Y.Y. Peng.


告人简介:

  丁南庆,理学博士,南京大学数学系二级教授,博士研究生导师,享受2002年度政府特殊津贴;主要研究同调代数、环论、模论等,已在国内外重要学术刊物上发表论文100余篇;主持完成多项国家自然科学基金及博士点基金项目。1994年获首届宝钢教育基金优秀教师奖;1995年获江苏省第四届青年科技奖;1996年获第五届霍英东青年教师奖二等奖;2002年和2019年获教育部自然科学奖二等奖。

 

 

欢迎参加!

 

邀请人:白占强, 董超平