2021117统计系列报告

腾讯会议: 770 886 328

 

报告1

时间:202111708:40-09:40

题目High-dimensional Varying Index Coefficient Quantile Regression Model

摘要Statistical learning is evolving quickly, with increasingly sophisticated models seeking to incorporate the complicated data structures from modern scientific and business problems. Varying-index coefficient models extend varying-coefficient models and single-index models for semiparametric regressions. This new class of model offers greater flexibility in terms of characterizing complicated nonlinear interaction effects in a regression analysis. To safeguard against outliers and extreme observations, we consider a robust quantile regression approach to estimate the model parameters. High-dimensional loading parameters are allowed in our development, under reasonable theoretical conditions. Thus, we propose a regularized estimation procedure to select the significant nonzero loading parameters, identify linear functions in varying-index coefficient models, and consistently estimate the parametric and nonparametric components. Under some technical assumptions, we show that the proposed procedure is consistent in terms of variable selection and linear function identification, and that the proposed parameter estimation enjoys the oracle property. Extensive simulation studies are carried out to assess the finite-sample performance of the proposed method. We illustrate our methods using an example based on New Zealand workforce data.

报告人简介: 吕晶,男,汉族,重庆潼南人,副教授。201512月博士毕业于重庆大学统计学专业。2018.02-2019.01LI JIALIANG教授邀请到新加坡国立大学统计与应用概率系从事博士后研究。目前主要从事超高维统计、股票指数追踪、精准医疗和生物统计研究,已在统计学领域公开发表二十余篇SCI期刊论文,部分结果发表在J. Amer. Statist. Assoc.Statist. SinicaJ. Roy. Statist. Soc. Ser. CComput. Statist. Data Anal.TestAnn. Inst. Statist. Math.等统计专业期刊上。主持国家青年基金项目1项,重庆市自然科学基金面上项目2项、2020重庆市留学人员回国创新支持计划1项、中央高校基本科研业务费2项、西南大学博士基金1项。在学术兼职方面,目前是BiometricsStatist. Med.J. Stat. Plan. Infer.Comput. Statist. Data Anal.等统计SCI期刊匿名审稿人。

 

 

报告2

时间:202111709:45-10:45

题目 Bayesian Joint Estimation of Multi-Response Quantile Regression Model

摘要This paper considers a Bayesian approach for joint estimation of the marginal conditional quantiles from several dependent variables under a linear regression framework. This approach incorporates the dependence among different response variables in the regression model which studies how the relationship between response variables and a set of explanatory variables can vary across different quantiles of the marginal conditional distribution of the response variables. Some simulation studies and a real data analysis are conducted to evaluate the performance of our proposed method.

报告人简介:田玉柱,男,博士、博士后、副教授、硕士生导师。20036月西北师范大学应用数学专业本科毕业, 20081月东南大学概率统计方向硕士毕业,20146月中国人民大学统计学专业博士毕业,20153月起在河南科技大学数学与统计学院工作。2019年6月中央财经大学计量经济学博士后流动站出站。2020年7月入职西北师范大学数学与统计学院。曾多次访问香港恒生大学、香港中文大学、香港大学、香港浸会大学、新加坡南洋理工大学等著名高校。主持完成国家自然科学基金青年基金、中国博士后科学基金面上项目、河南科技大学青年学术带头人项目及河南省高等学校重点科研项目等。目前主持国家自然科学基金基金和甘肃省自然科学基金各1项。在Computational Statistics & Data AnalysisStatistics and InferenceComputational Statistics等期刊发表SCI论文20余篇。

 

报告3

时间:202111710:50-11:50

题目Linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA

摘要A general linear hypothesis testing (GLHT) problem in heteroscedastic one-way MANOVA for high-dimensional data is considered and a normal reference L2-norm based test for the problem is proposed. Different from a few existing methodologies on the GLHT problem which impose strong assumptions on the underlying covariance matrices so that the associated tests’ null distributions are asymptotically normal, it is shown that under some regularity conditions, the proposed test statistic under the null hypothesis and a chi-square type mixture have the same normal or non-normal limiting distributions. It is then suggested to approximate the test’s null distribution using the distribution of the chi-square type mixture, which can be further approximated by the Welch–Satterthwaite chi-square-approximation with approximation parameters consistently estimated. Several simulation studies and a real data application are presented to demonstrate the good performance of the proposed test.

报告人简介: 周布,浙江工商大学统计与数学学院副研究员,硕士生导师。2016年博士毕业于新加坡国立大学,2012年硕士毕业于华东师范大学,2009年本科毕业于山东大学。主要研究方向为高维数据假设检验,函数型数据分析,统计计算。目前担任Mathematical Reviews评论员,中国现场统计研究会高维数据统计分会理事。Journal of the American Statistical AssociationComputational Statistics & Data AnalysisJournal of Multivariate Analysis等期刊上发表论文十余篇。

 

 

报告4

时间:202111713:30-14:30

报告题目Oracally Efficient Estimation in Partially Linear Single-index Models for Longitudinal Data with Simultaneous Confidence Bands

摘要Oracally efficient estimation and an asymptotically accurate simultaneous confidence band

are established for the nonparametric link function in the partially linear single-index models for longitudinal data. The proposed procedure works for possibly unbalanced longitudinal data under general conditions. The link function estimator is shown to be oracally efficient in the sense that it is asymptotically equivalent in the order of n^{-1/2} to that with all true values of the parameters being known oracally. Furthermore, the asymptotic distribution of the maximal deviation between the estimator and the true link function is provided, and hence a simultaneous confidence band for the link function is constructed. Finite sample simulation studies are carried out which support our asymptotic theory. The proposed SCB is applied to analyze a CD4 data set.

报告人简介:蔡利,浙江工商大学,讲师,苏州大学统计学博士,博士期间先后访问了清华大学统计学研究中心、Texas &M University统计系。主要从事非参数与半参数回归方法在不同数据类型下的统计推断研究,尤其针对复杂函数型数据、纵向数据、缺失数据等。先后在统计学国际主流SCI期刊如TEST, Statistica Sinica, Electronic Journal of StatisticsStatistical PapersAnnals of the Institute of Statistical Mathematics等刊物发表论文近十篇。先后主持国家自然科学基金(青年项目),国家统计局重点项目,浙江省统计局青年项目,浙江省属高校基本业务费专项(新锐计划)等项目多项。

 

 

报告5
时间:202111714:35-15:35

题目Fitting the generalized Pareto distribution to data based on transformations of order statistics

摘要 In this paper, we propose a modified estimators based on percentiles (MPCE) to improve the estimators performance based on percentiles for the generalized Logistic distribution. Simulation results indicate that MPCE outperforms other existing methods in terms of MSE. Finally, the proposed method is applied to a real data set.

报告人简介:陈海清南京财经大学经济学院统计系讲师,硕士生导师。感兴趣的研究方向有极值分布的统计推断,分布的拟合优度,机器学习。目前以第一作者发表SCI论文6篇,中文核心3篇。在研项目有:基于深度学习和多源数据融合的金融风险度量方法研究(国家社科项目)。

 

 

报告6

时间:202111715:40-16:40

题目 Rubin因果模型的统计推断及应用

摘要:在经济学、气象学、生物学、流行病学和社会学等领域的研究工作中,经常会遇到高维数据、复共线性数据、纵向数据存在的情形。如果忽略数据本身的特殊结构,仅仅使用简单的 Rubin 因果模型,很有可能使得统计推断精度降低甚至方法失效。因此,考虑高维数据、复共线性数据、纵向数据下的 Rubin 因果模型的统计推断问题,是极其必要的。针对建立的统计模型,给出兴趣参数平均处理效应的估计量。理论上,证明了所提估计量的优越性及其大样本性质。最后,利用随机模拟研究方法和实例分析验证了所提方法的有效性。

报告人简介:岳莉莉,南京审计大学统计与数据科学学院讲师。20206月在北京工业大学理学部获得统计学专业博士学位。研究领域涉及因果推断、高维数据分析、面板数据分析等。近年来曾访问香港城市大学和美国乔治华盛顿大学,目前在国内外期刊Computational Statistics and Data AnalysisTest、中国科学.数学等期刊上发表了多项研究成果,曾主持国家自然科学基金青年项目,并参与了多项国家自然科学基金面上项目、北京北京市自然科学基金项目和江苏省自然科学基金项目。

 

 

邀请人:马学俊