题目:SRB measures for partially hyperbolic expanding flows II-mostly contracting case, Part I

报告人:糜泽亚 (南京信息工程大学)

时间:202011280900-9:50

地点:纯水楼301

摘要:For a partially hyperbolic system with mostly contacting centers, we prove the finiteness of SRB/physical measures and with basin covering property. 



题目:SRB measures for partially hyperbolic expanding flows II-mostly contracting case, Part II

报告人:糜泽亚 (南京信息工程大学)

时间:20201128日1000 - 11:00

地点:纯水楼301

摘要:For a partially hyperbolic system with mostly contacting centers, we establish the statistical stability of this kind of flows.

  

题目:Continuity of subadditive topological pressure,Part I

报告人:邹瑞(南京信息工程大学)

时间:2020112811:00-11:50

地点:纯水楼301

摘要:Let f be a totally non-uniformly hyperbolic systemand let A be a Holder continuous cocycle of injective bounded linear operators acting on a Banach space with A(x) compact and injective everywhere .  We introduce the definitions and basic properties of the topological pressure of the singular value potentials.

   

题目:Continuity of subadditive topological pressure,Part II

报告人:邹瑞(南京信息工程大学)

时间:2020112813:30-14:20

地点:纯水楼301

摘要:For a Holder continuous cocycle A of injective bounded linear operators over a totally non-uniformly hyperbolic system, we prove that the topological pressure of the singular value potentials is continuous at A.

题目:Dimension theory of uniform Diophantine approximation related to Beta-transformations, Part I

报告人:吴万楼 (江苏师范大学)

时间:2020112814:30-15:20

地点:纯水楼301

摘要:For $\beta>1$, let $T_\beta$ be the $\beta$-transformation defined on $[0,1)$. We study the sets of points whose orbits of $T_\beta$ have uniform Diophantine approximation properties. Precisely, for two given positive functions  $\psi_1,~\psi_2:\mathbb{N}\rightarrow\mathbb{R}^+$, define $$\mathcal{L}(\psi_1):=\left\{x\in[0,1]:T_\beta^n x<\psi_1(n),\text{for infinitely many $n\in\mathbb{N}$}\right\},$$ $$\mathcal{U}(\psi_2):=\left\{x\in [0,1]:\forall~N\gg1,~\exists~n\in[0,N],~s.t.~T^n_\beta x<\psi_2(N)\right\},$$ where $\gg$ means large enough. We calculate the Hausdorff dimension of the set $\mathcal{L}(\psi_1)\cap\mathcal{U}(\psi_2)$. 

  

题目:Dimension theory of uniform Diophantine approximation related to Beta-transformations, Part II

报告人:吴万楼 (江苏师范大学)

时间:2020112814:30-15:20

地点:纯水楼301

摘要:For $\beta>1$, let $T_\beta$ be the $\beta$-transformation defined on $[0,1)$.  For two given positive functions  $\psi_1,~\psi_2:\mathbb{N}\rightarrow\mathbb{R}^+$, define

  

$$\mathcal{L}(\psi_1):=\left\{x\in[0,1]:T_\beta^n x<\psi_1(n),\text{for infinitely many $n\in\mathbb{N}$}\right\},$$ $$\mathcal{U}(\psi_2):=\left\{x\in [0,1]:\forall~N\gg1,~\exists~n\in[0,N],~s.t.~T^n_\beta x<\psi_2(N)\right\},$$ We obtain the Hausdorff dimension of the set $\mathcal{U}(\psi_2)$. Our work generalizes the results of Bugeaud and Liao where only exponential functions $\psi_1,~\psi_2$ were taken into consideration..

题目:Uniform Diophantine approximation related to beta-transformations 

报告人:吴万楼 (江苏师范大学)

时间:2020112816:30-17:20

地点:纯水楼301

摘要:For any $\beta>1$, let $T_\beta$ be the classical $\beta$-transformations. Fix $x_0\in[0,1]$ and a nonnegative real number $\hat{v}$, we compute the Hausdorff dimension of the set of real numbers $x\in[0,1]$ with the property that, for every sufficiently large integer $N$, there is an integer $n$ with $1\leq n\leq N$ such that the distance between $T_\beta^nx$ and $x_0$ is at most equal to $\beta^{-N\hat{v}}$.

邀请人:陈剑宇