报告时间:2022年1月16日, 北京时间14: 00-16:00

腾讯会议ID:368-5158-9638

链接:https://meeting.tencent.com/dm/1RnRgAQc7BhL


报告人:徐辉(中国科学技术大学) 


Lecture 1. Universal minimal flow

First we show how construct the universal ambit and minimal flow for a topological group. Then we will prove Veech’s Theorem saying that the action of a locally compact group on whose universal minimal flow is free. This is the initial model for realizing general uniform recurrent subgroups.  Finally, we introduce some examples of extremely amenable groups.



报告时间:2022年1月17日, 北京时间14: 00-16:00

腾讯会议ID:368-5158-9638

链接:https://meeting.tencent.com/dm/1RnRgAQc7BhL


Lecture 2. Uniformly recurrent subgroups 

First we introduce the Chabauty topology on the space Sub(G) of the closed subgroups of a locally compact group G. Then Sub(G) is a compact Hausdorff space and  G acts on Sub(G) continuously by conjugation. 

 Uniformly random subgroups and uniformly recurrent subgroups(URS) correspond to the ergodic measures and minimal subsystems of (Sub(G),G). In this lecture, we mainly introduce these definitions  and show that  we can obtain URS from any minimal G-flows naturally.



报告时间:2022年1月18日, 北京时间14: 00-16:00

腾讯会议ID:368-5158-9638

链接:https://meeting.tencent.com/dm/1RnRgAQc7BhL


Lecture 3. Realizing uniformly recurrent subgroups

We will show that any URS can be realized as the stabilizers of a minimal system.  For finitely generated countable groups, we will give  another realizations. Finally we will show there is a free subshift for any infinite countable group and give some open questions.



邀请人:梁兵兵