报告时间:2021年4月14日, 10:00-11:00
报告地点:腾讯会议:778 503 866
报告人:黄泽军(深圳大学)
报告摘要:Let n and k be integers larger than or equal to 2. What is the maximum number of ones in an n-by-n matrix A such that both A and A^k are 0-1 matrices? This problem is equivalent to the following: if D is a simple digraph on n vertices such that it does not contain two distinct walks of length k with the same initial vertex and the same terminal vertex, what is the maximum size of D?
In this talk, we will present the solution to this problem. This talk is based on joint work with Zhenhua Lyu, Pu Qiao and Xingzhi Zhan.
报告人简介:黄泽军,深圳大学数学与统计学院副教授。2011年博士毕业于华东师范大学,毕业后于香港理工大学从事博士后研究,2014年至2019年曾在湖南大学数学研究所任助理教授、副教授和博士生导师。主要研究领域为组合矩阵论,目前担任Electronic Journal of Linear Algebra编委。
欢迎参加!
邀请人:白占强, 董超平