报告时间:2021年6月20日(周日) 20:00—21:00
报告地点:腾讯会议:882 408 581
报告人:刘新为
报告摘要:内点方法是求解约束优化的一类重要和有效的方法,它是求解线性规划的多项式时间算法。然而内点要求会在坏条件、高精度、稀疏性等方面给算法带来一些困扰。我们提出的内点松弛方法能够改善这些困扰。理论和数值结果证实了我们方法的有效性。
个人简介:刘新为,1998年博士毕业于中国科学院计算数学与科学工程计算研究所。现任河北工业大学理学院教授、校学术委员会委员、数学研究院常务副院长,数学和统计专业硕士生导师,控制理论与控制工程和人工智能方向博士生导师。是中国运筹学会常务理事、中国运筹学会数学规划分会常务理事,中国数学会计算数学分会理事,河北省运筹学会副理事长兼秘书长,河北省数学会计算数学分会理事长,《Mathematical Methods of Operations Research》、《Pacific Journal of Optimization》和《计算数学》编委。主要研究非凸非线性优化算法及其收敛性理论,在优化和计算数学类国际重要刊物《Mathematical Programming》、《SIAM Journal on Optimization》、《SIAM Journal on Scientific Computing》、《Mathematics of Computation》及《IEEE Transactions on Neural Networks and Learning Systems》等发表多篇论文。先后主持5项国家自然科学基金面上项目、参与1项国家自然科学基金重大研究计划项目。是河北省政府特殊津贴专家和国家自然科学奖会评专家。
邀请人:陈中文